首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2313篇
  免费   498篇
  国内免费   875篇
测绘学   26篇
大气科学   10篇
地球物理   544篇
地质学   2503篇
海洋学   168篇
天文学   11篇
综合类   117篇
自然地理   307篇
  2024年   3篇
  2023年   42篇
  2022年   91篇
  2021年   77篇
  2020年   99篇
  2019年   93篇
  2018年   106篇
  2017年   111篇
  2016年   111篇
  2015年   101篇
  2014年   120篇
  2013年   139篇
  2012年   161篇
  2011年   112篇
  2010年   110篇
  2009年   172篇
  2008年   160篇
  2007年   205篇
  2006年   194篇
  2005年   155篇
  2004年   143篇
  2003年   126篇
  2002年   132篇
  2001年   131篇
  2000年   121篇
  1999年   114篇
  1998年   104篇
  1997年   76篇
  1996年   56篇
  1995年   59篇
  1994年   60篇
  1993年   49篇
  1992年   34篇
  1991年   30篇
  1990年   26篇
  1989年   19篇
  1988年   17篇
  1987年   13篇
  1986年   5篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1978年   2篇
  1973年   1篇
  1954年   1篇
排序方式: 共有3686条查询结果,搜索用时 250 毫秒
1.
In this paper, a comprehensive study on simulating the shearing behavior of frictional materials is performed. A set of two explicit equations, describing the relationship among the shear stress ratio and the distortional strain and the volumetric strain, are formulated independently. The equations contain three stress parameters and three strain parameters and another parameter representing the nonuniformity of stress and strain during softening. All the parameters have clear physical significance and can be determined experimentally. It is demonstrated that the proposed equations have the capacity of simulating the complicated shearing behavior of many types of frictional materials including geomaterials. The proposed equations are used to simulate the stress–strain behavior for 27 frictional materials with 98 tests. These materials include soft and stiff clays in both reconstituted and structured states, silicon sands and calcareous sands, silts, compacted fill materials, volcanic soils, decomposed granite soils, cemented soils (both artificially and naturally cemented), partially saturated soils, ballast, rocks, reinforced soils, tire chips, sugar, wheat, and rapeseed. It has been demonstrated that the proposed explicit constitutive equations have the capacity to capture accurately the shearing behavior of frictional materials both qualitatively and quantitatively. A study on model parameters has been performed.  相似文献   
2.
This paper presents a second-order work analysis in application to geotechnical problems by using a novel effective multiscale approach. To abandon complicated equations involved in conventional phenomenological models, this multiscale approach employs a micromechanically-based formulation, in which only four parameters are involved. The multiscale approach makes it possible a coupling of the finite element method (FEM) and the micromechanically-based model. The FEM is used to solve the boundary value problem (BVP) while the micromechanically-based model is utilized at the Gauss point of the FEM. Then, the multiscale approach is used to simulate a three-dimensional triaxial test and a plain-strain footing. On the basis of the simulations, material instabilities are analyzed at both mesoscale and global scale. The second-order work criterion is then used to analyze the numerical results. It opens a road to interpret and understand the micromechanisms hiding behind the occurrence of failure in geotechnical issues.  相似文献   
3.
中国古生教授学会微体古生物学分会举行代表大会和学术年会中国古竽物学会微体古物学分会第五次会员代表大分暨第六次不术年会于1996年1月24日到30日在福州市召开。来自全国地质、石油、煤炭的和产、科研和大学的100多位代表参加了这次大会和学术研讨。大会共...  相似文献   
4.
5.
本文简述了沙柳河南区有色金属矿床的基本特征。通过对成矿热液及成矿物质的来源与性质的研究,认为该矿床的成因类型为火山沉积—接触交代改造叠加型,进而探讨了该矿床的成矿模式。  相似文献   
6.
Summary. A residual map of the total magnetic field (above 25 000 nT base) is presented for a portion of the central crystalline shield area of Nigeria and overlapping small portions of the Chad basin and the Benue rift (8°30'−12° 00'lat, and 7°−10°30' long). The map (based on a dataset digitized from recently released aeromagnetic sheets of Nigeria) leads to four results. (1) A magnetic boundary, evident on the map, separates the Younger Granite complexes into two groups. The groups are petrologically different, and the boundary may be a fault line with uplift to the south. (2) South of the boundary the map is dominated by a system of sub-parallel anomalies striking NE–SW, possibly representing major tectonic trends, and a set of fractures through which the Younger Granite complexes were intruded. The trend of the system parallels the Benue rift and lineaments in the oceanic crust off West Africa. (3) Negative magnetic anomalies lie over most of the known ring complexes, and over some suspected buried ring complexes and other intrusions. (4) 2½-and 3-D modelling shows that the larger complexes extend to 12 km depth, and the smaller ones to 6 km. They have nearly vertical sides, and magnetization contrasts range from 0.3 to 0.5 A m−1.  相似文献   
7.
1 IntroductionDiscontinuousDeformationAnalysis(DDA)developedbyShiin 1 980’s[1 ,2 ] maybeusedtocalculatethedeformationanddisplacementsinamulti blocksystemandtoanalyzetherelationbe tweenforcesanddisplacementsinthesystem .Ifthesurveydisplacementofeverypointordirectionisknown,alldisplacementsanddeformationsofblocks,eventheglide ,theclosureandthestretchoftheboundary planeofblocks ,canbecalculated .TheresultisoptimallyfittedaccordingtotheLeastSquarePrinciple.DDAismainlyusedinrockblockssystems…  相似文献   
8.
The Rayleigh wave phase and group velocities in the period range of 24–39 sec, obtained from two earthquakes which occurred in northeastern brazil and which were recorded by the Brazilian seismological station RDJ (Rio de Janeiro), have been used to study crustal and upper mantle structures of the Brazilian coastal region. Three crustal and upper mantle models have been tried out to explain crustal and upper mantle structures of the region. The upper crust has not been resolved, due basically to the narrow period range of the phase and group velocities data. The phase velocity inversions have exhibited good resolutions for both lower crust and upper mantle, with shear wave velocities characteristic of these regions. The group velocity data inversions for these models have showed good results only for the lower crust. The shear wave velocities of the lower crust (3.86 and 3.89 km/sec), obtained with phase velocity inversions, are similar to that (=3.89 km/sec) found byHwang (1985) to the eastern South American region, while group velocity inversions have presented shear velocity (=3.75 km/sec) similar to that (=3.78 km/sec) found byLazcano (1972) to the Brazilian shield. It was not possible to define sharply the crust-mantle transition, but an analysis of the phase and group velocity inversions results has indicated that the total thickness of the crust should be between 30 and 39 km. The crustal and upper mantle model, obtained with phase velocity inversion, can be used as a preliminary model for the Brazilian coast.  相似文献   
9.
Two different models of the structure of the Icelandic crust have been presented. One is the thin-crust model with a 10–15 km thick crust beneath the axial rift zones, with an intermediate layer of partially molten basalt at the base of the crust and on the top of an up-domed asthenosphere. The thick-crust model assumes a 40 km thick and relatively cold crust beneath central Iceland. The most important and crucial parameter to distinguish between these different models is the temperature distribution with depth. Three methods are used to estimate the temperature distribution with depth. First, the surface temperature gradient measured in shallow wells drilled outside geothermal areas. Second, the thickness of the seismogenic zone which is associated with a 750 °C isothermal surface. Third, the depth to a layer with high electrical conductivity which is associated with partially molten basalt with temperature around 1100 °C at the base of the crust. Combination of these data shows that the temperature gradient can be assumed to be nearly linear from the surface down to the base of the crust. These results are strongly in favour of the thin-crust model. The scattered deep seismic reflectors interpreted as Moho in the thick-crust model could be caused by phase transitions or reflections from melt pockets in the mantle.  相似文献   
10.
Mafic rocks in the Chipman domain of the Athabasca granulite terrane, western Canadian Shield, provide the first well‐documented record of two distinct high‐P granulite facies events in the same domain in this region. Textural relations and the results of petrological modelling (NCFMASHT system) of mafic granulites are interpreted in terms of a three‐stage tectonometamorphic history. Stage 1 involved development of the assemblage Grt + Cpx + Qtz ± Pl (M1) from a primary Opx‐bearing igneous precursor at conditions of 1.3 GPa, 850–900 °C. Field and microstructural observations suggest that M1 developed synchronously with an early S1 gneissic fabric. Stage 2 is characterized by heterogeneous deformation (D2) and synkinematic partial retrogression of the peak assemblage to an amphibole‐bearing assemblage (M2). Stage 3 involved a third phase of deformation and a return to granulite facies conditions marked by the prograde breakdown of amphibole (Amph2) to produce matrix garnet (Grt3a) and the coronitic assemblage Cpx3b + Opx3b + Ilm3b + Pl3b (M3b) at 1.0 GPa, 800–900 °C. M1 and M3b are correlated with 2.55 and 1.9 Ga metamorphic generations of zircon, respectively, which were dated in a separate study. Heterogeneous strain played a crucial role in both the development and preservation of these rare examples of multiple granulite facies events within single samples. Without this fortuitous set of circumstances, the apparent reaction history could have incorrectly led to an interpretation involving a single‐cycle high‐grade event. The detailed PTtD history constructed for these rocks provides the best evidence to date that much of the east Lake Athabasca region experienced long‐term lower crustal residence from 2.55 to 1.9 Ga, and thus the region represents a rare window into the reactivation and ultimate stabilization processes of cratonic lithosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号